
2012 University of Virginia High School Programming Contest

Welcome to the 2012 University of Virginia High School Programming Contest. Before you start the
contest, please be aware of the following notes:

The Contest

1. There are ten (10) problems in the packet, using letters A-J. These problems are NOT sorted by
difficulty. As a team’s solution is judged correct, the team will be awarded a balloon. The balloon
colors are as follows:

Problem Problem Name Baloon Color

A Grading Exams Yellow

B Reducing Improper Fractions Green

C Ant Entrapment Red

D Math Tutoring Black

E Where’s the Rainbow Orange

F Painting Party Blue

G Back and Forth Pink

H Hoo’s Afraid of the Big Bad Wolf? White

I Canyon Crossing Purple

J Yahtzee Gray

2. Solutions for problems submitted for judging are called runs. Each run will be judged.

The judges will respond to your submission with one of the following responses. In the event that
more than one response is applicable, the judges may respond with any of the applicable responses.

Response Explanation

Yes Your submission has been judged correct.
No - Wrong Answer Your submission generated output that is not correct or is

incomplete.
No - Output Format Error Your submission’s output is not in the correct format or is

misspelled.
No - Excessive Output Your submission generated output in addition to or instead

of what is required.
No - Compilation Error Your submission failed to compile.
No - Run-Time Error Your submission experienced a run-time error.

No - Time Limit Exceeded Your submission did not terminate within one minute.

3. A team’s score is based on the number of problems they solve and penalty minutes, which reflect the
amount of time and number of incorrect submissions made before the problem is solved. For each
problem solved correctly, penalty minutes are issued equal to the time at which the problem was
solved plus 20 minutes for each incorrect submission. No penalty minutes are added for problems
that are never solved. Teams are ranked first by the number of problems solved and then by the
fewest penalty minutes.

The Contest UVa HSPC 2012 1 of 18

4. This problem set contains sample input and output for each problem. However, the judges will test
your submission against several other more complex datasets, which will not be revealed until after
the contest. One challenge is designing other input sets for yourself so that you may fully test your
program before submitting your run. Should you receive a “wrong answer” judgment, you should
consider what other datasets you could design to further evaluate your program.

5. In the event that you think a problem statement is ambiguous or incorrect, you may request a
clarification. Read the problem carefully before requesting a clarification. If the judges believe that
the problem statement is sufficiently clear, you will receive the response, “The problem statement
is sufficient; no clarification is necessary.” If you receive this response, you should read the problem
description more carefully. If you still think there is an ambiguity, you will have to be more specific
or descriptive of the ambiguity you have found. If the problem statement is ambiguous in specifying
the correct output for a particular input, please include that input data in the clarification request.

You may not submit clarification requests asking for the correct output for inputs that you provide.
Sample inputs may be useful in explaining the nature of a perceived ambiguity, e.g., “There is no
statement about the desired order of outputs. Given the input: . . . , would not both this: . . . and
this: . . . be valid outputs?”.

If a clarification is issued during the contest, it will be broadcast to all teams.

6. Runs for each particular problem will be judged in the order they are received. However, it is possible
that runs for different problems may be judged out of order. For example, you may submit a run for
B followed by a run for C, but receive the response for C first.

Do not request clarifications on when a response will be returned. If you have not received a response
for a run within 30 minutes of submitting it, you may have a runner ask the site judge to
determine the cause of the delay. Under no circumstances should you ever submit a
clarification request about a submission for which you have not received a judgment.

If, due to unforeseen circumstances, judging for one or more problems begins to lag more than 30 min-
utes behind submissions, a clarification announcement will be issued to all teams. This announcement
will include a change to the 30 minute time period that teams are expected to wait before consulting
the site judge.

7. The submission of abusive programs or clarification requests to the judges will be considered grounds
for immediate disqualification.

Your Programs

8. All solutions must read from standard input and write to standard output. In C this is scanf/printf,
in C++ this is cin/cout, and in Java this is System.in/System.out. The judges will ignore all output
sent to standard error (cerr in C++ or System.err in Java). You may wish to use standard error to
output debugging information. From your workstation you may test your program with an input file
by redirecting input from a file:

program < file.in

9. All lines of program input and output should end with a newline character (\n, endl, or println()).

The Contest UVa HSPC 2012 2 of 18

10. All input sets used by the judges will follow the input format specification found in the problem
description. You do not need to test for input that violates the input format specified in the problem.

11. Unless otherwise specified, all lines of program output should be left justified, with no leading blank
spaces prior to the first non-blank character on that line.

12. Unless otherwise specified, all numbers in your output should begin with a - if negative, followed
immediately by 1 or more decimal digits. If it is a real number, then the decimal point should be
followed by as many decimal digits as can be printed. This means that for floating point values, use
standard printing techniques (cout and System.out.println). The judging will check your programs
with 10−3 accuracy, so only consider the sample output up until that point.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you should
ensure you do not round or use a set precision.

13. If a problem specifies that an input is a floating point number, the input will be presented according
to the rules stipulated above for output of real numbers, except that decimal points and the following
digits may be omitted for numbers with no fractional component. Scientific notation will not be used
in input sets unless a problem statement explicitly specifies it.

Good luck, and HAVE FUN!!!

The Contest UVa HSPC 2012 3 of 18

A. Grading Exams

Ms. Garrette needs help grading her multiple choice exams. To prevent
cheating, she gave each student an individualized exam. She wants to write
a program that, given an answer key and a particular student’s responses,
calculates the number of incorrect answers. Can you help her?

Input

The first line of input is the number of test cases that follow. Each test
case starts with an integer L (0 < L ≤ 100) representing the number of
questions on the exam. The next line contains the answer key, where each
question is represented by a single letter (i.e. a, b, c, or d) corresponding
to the correct answer. The following line contains the student’s responses
in the same format.

Output

For each case, output the line “Case x:” where x is the case number, on a single line. This is followed by
the number of student responses that did not match the answer key.

Sample Input

2

5

abadd

abada

3

cba

abc

Sample Output

Case 1: 1

Case 2: 2

A. Grading Exams UVa HSPC 2012 4 of 18

B. Reducing Improper Fractions

You were invited to a St. Patrick’s Day party, but you aren’t allowed to
leave until you finish your fraction reduction homework. You want to go
to the party as soon as possible so you decide to write a program to do
your homework for you. Given an improper fraction, calculate its reduced
form.

Input

The first line of input is the number of test cases that follow. Each test
case is a line containing two integer values. The first integer value will be
the numerator n (0 ≤ n ≤ 109), the second integer is the denominator d
(0 < d ≤ 109).

Output

For each case output the line “Case x:” where x is the case number, on a single line, followed by a space,
and then proper fraction. Each fraction will be of the form “I N/D”, where I is the integer part, N is
the numerator of the fractional part, and D is the denominator of the fractional part. If the integer value
is less than than 0, only output “N/D”. If both the integer value and the reduced numerator are zero,
output “0”. If there is no fractional part, only output “I”.

Sample Input

4

301 100

89 39

50 25

25 50

Sample Output

Case 1: 3 1/100

Case 2: 2 11/39

Case 3: 2

Case 4: 25/50

B. Reducing Improper Fractions UVa HSPC 2012 5 of 18

C. Ant Entrapment

Recently, your friend Oscar purchased an ant farm. He accidentally let
the ants loose on his floor and now they’re crawling everywhere! You
want to fence them off with a single continuous rectangle so that they’re
not running amok. However, due to technical limitations your fence pieces
must be aligned with the X and Y axes. The figure below shows an example
of a fence around a set of ants (slight offsets from the border are just for
visual effect).

What is the perimeter and area of the smallest fence that contains all of the ants?

Input

The first line of input is the number of test cases that follow. Each test case starts with an integer N
(1 ≤ N ≤ 100) on a line by itself representing the number of ants. The following N lines of input contain
two floating-point values X and Y (−1000.0 ≤ X,Y ≤ 1000.0) representing the position of an ant. You
can assume that ants are single points–they have no area.

Output

For each case output the line “Case x:” where x is the case number, on a single line, followed by the string
“Area” and the area of the fence as a floating-point value and then a comma, followed by a space and then
“Perimeter” and the perimeter of the fence as a floating-point value.

C. Ant Entrapment UVa HSPC 2012 6 of 18

Sample Input

2

3

-1.000 0.000

5.000 11.500

3.200 -4.250

2

2.125 0.500

6.875 9.100

Sample Output

Case 1: Area 94.5, Perimeter 43.5

Case 2: Area 40.85, Perimeter 26.7

C. Ant Entrapment UVa HSPC 2012 7 of 18

D. Math Tutoring

You are helping a friend with the rule for taking the derivative of a polynomial,
but he just can’t seem to get it! You’ve gone over many examples, and finally you
decide to just write a program to compute the derivatives for him.

Recall that a polynomial of the form:

anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0

has as its derivative:

nanx
n−1 + (n− 1)an−1x

n−2 + . . .+ 2a2x+ a1

For example, the derivative of 2x3− x+ 3 is 6x2− 1. Likewise, the derivatave
of 3x4 + 2x3 + 7x2 + 5x+ 7 is 12x3 + 6x2 + 14x+ 5.

Given a polynomial, provide the derivative. We are only using polynomials of the form presented here.

Input

The rst line of input is the number of test cases that follow.

Each input case appears on a single line, and will start with a single integer, n (1 ≤ n ≤ 100), which
is the highest exponent of the polynomial. n+ 1 values will follow, which are the coefficients of the terms
xn down to x0 = 1, respectively. All coefficients will be integers between -1000 and 1000, inclusive. The
highest exponent will always be positive. All numbers will be separated by a single space.

Output

For each case, output the line “Case x:” where x is the case number, on a single line. The output polynomial
is to be formatted in the same manner as the input: the first value being the highest polynomial, and the
successive values being the coefficients for the individual terms. Each output case should be on one line,
with the values separated by one space.

Sample Input

4

3 2 0 -1 3

4 3 2 7 5 7

5 6 5 4 3 2 1

1 5 10

Sample Output

Case 1: 2 6 0 -1

Case 2: 3 12 6 14 5

Case 3: 4 30 20 12 6 2

Case 4: 0 5

D. Math Tutoring UVa HSPC 2012 8 of 18

E. Where’s the Rainbow

After a long day of working on HSPC problems, you see a rainbow in the sky
and want to figure out how far you have to walk to get your pot of gold. You
are given a 2D plane and a semi-circle (rainbow) of height h placed with the
center somewhere along the x-axis. You are also given an angle of inclination
to view the top of the rainbow from the origin. Find how far away the closest
point on the rainbow is to you by using the picture below to solve for d, the
distance between you and the closest point on the rainbow. You can ignore
the height/width of the person; treat them as a point.

Input

The first line of input is the number of test cases that follow. Each successive line represents a single test
case, and will be composed of two floating point numbers, separated by a single space. The first value is
h (1 ≤ h ≤ 105), the height of the rainbow at its highest point. The second is the angle of inclination θ
(0 < θ < 90).

Output

For each case output the line “Case x:” where x is the case number, on a single line, followed by d, the
distance from you to the rainbow.

Sample Input

2

50.0 45.0

100.0 75.0

Sample Output

Case 1: 0.00

Case 2: 73.20508

E. Where’s the Rainbow UVa HSPC 2012 9 of 18

F. Painting Party

A start-up company wants to hire you to write a painting program. As
part of your interview, they have asked you to write a program that can
draw filled and empty rectangles of different colors on a square grid of
pixels. An empty rectangle will have a border that is one pixel thick.
If a new rectangle is requested, it should completely overwrite what, if
anything, was in that area.

Input

The first line of input is the number of test cases that follow. Each test
case starts with an integer N (1 ≤ N ≤ 100) on a line by itself which is
the width and height of the pixel grid; all pixel grids are square. The next
line contains an integer M (0 ≤ M ≤ 100) which represents the number of rectangles to draw. The next
M lines start with either the string “Filled” or “Empty” stating whether to draw a filled or an empty
rectangle. This is followed by 4 space-separated integers: X Y W H where X and Y are the position of
the bottom-left corner of the rectangle, W is the width of the rectangle, and H is the height. This is then
followed by a space and then a single character C, representing the color to draw the rectangle. C will
be an uppercase letter between A and Z. X is the horizontal axis, meaning the number of characters from
the left. Y is the vertical axis, meaning the number of characters from the bottom. All rectangles will be
completely contained by the pixel grid. Note that the bottom-left corner of the grid is represented by the
point (1,1).

Output

For each case output “Case x:” where x is the case number, on a single line by itself. Then output N
lines of N characters each representing the final drawing of the paint program. If nothing was drawn at a
particular pixel, a ‘.’ should be outputted instead.

Sample Input

2

5

1

Filled 2 1 3 3 G

5

2

Empty 1 1 5 5 Y

Filled 1 2 2 1 B

Sample Output

Case 1:

.....

.....

.GGG.

.GGG.

.GGG.

Case 2:

YYYYY

Y...Y

Y...Y

BB..Y

YYYYY

F. Painting Party UVa HSPC 2012 10 of 18

G. Back and Forth

The neighborhood kids have come up with another crazy game. Everybody
runs back and forth within bounds, but they can only move in straight
lines! The rules of the game are as follows:

• Before the game starts, someone is chosen to be “it.”

• The game goes for a set amount of rounds, during which each player
may take one step in their given direction.

• If more than two players land on a spot at one time, they all reverse
their direction.

• If only two collide, then they will switch directions for the next step as follows. The one with the
longer name starts moving in the direction that the other would. The one with the shorter name
takes the reverse of the direction of the other player. (This only works because all of the kids in the
neighborhood have different length names.)

• If a player’s next step would put the player out of bounds, they reverse direction before taking their
step.

• The winner is the person who ends up closest to the “it” player, with ties going to the person with
the shorter name.

John thinks that this game is silly, since he could predict the outcome just by knowing the initial
configuration. He wants you to write a program to do just that so he can show the other kids and convince
them to play better games.

Below is the representation of the first test case. Note that (0,0) is the bottom-left corner.

G. Back and Forth UVa HSPC 2012 11 of 18

Input

The first line of input is the number of test cases that follow. Each test case begins with a line containing
integers M , N , and P : the field’s width, its height (both measured in “steps”), and the number of players,
respectively (M,N,P < 10). The next P lines contain space-separated values, starting with the name of
one kid, followed by the x and y coordinates of their starting position on the field and the direction in
which they start (N , S, E, or W). No two kids will start in the same spot. The first of the kids listed is
“it” for the game. The last line of the test case (≤ 1000) is the number of rounds to play.

Output

For each case output “Case x:” where x is the case number, on a single line, followed by a space, and the
name of the winner for that test case.

Sample Input

2

5 5 3

Sam 1 1 N

Sally 2 2 W

Bartholomew 3 3 S

20

5 5 4

Sam 0 0 N

Ed 4 0 W

Rebecca 0 4 E

Sally 4 4 S

3

Sample Output

Case 1: Sally

Case 2: Ed

G. Back and Forth UVa HSPC 2012 12 of 18

H. Hoo’s Afraid of the Big Bad Wolf?

Little Red Riding Hood is walking to visit her Grandmother’s house. Thank-
fully, Little Red Riding Hood is an avid reader of the Bid Bad Wolf’s blog,
which details the paths he and his friends are guarding. The Big Bad Wolf
is no technological slouch, and knows the importance of keeping information
private; thus his blog only states the likelihood that a path won’t be guarded
by a wolf. Should Little Red Riding Hood take a path that a wolf is guarding,
she will be devoured, which is never a good thing. Paths through the forest
are one-directional, and Little Red Riding Hood may not go backwards along
a path. What route should Little Red Riding Hood take to maximize the
chance of making it to Grandmother’s?

Below is a diagram representing the first test case.

Input

The first line of input is the number of test cases that follow. Each test case starts with an integer N
(1 ≤ N ≤ 100) on a line by itself representing the number of intersections. Then there will be a single
line with two integers, X and Y (1 ≤ X,Y ≤ N), separated by a single space, indicating the numbers
of the start (X) and end (Y) intersections. There will always be a path from the starting intersection to
the ending intersection. Then the input will contain a single line with an integer M (0 ≤ M ≤ 5000),
indicating the number of directed paths. M lines will follow, each containing three values separated by
spaces: the start intersection A, the end intersection B, and the likelihood represented as a floating point
number (0.000 < P ≤ 1.000) that a path is safe–there is no wolf on that path. There can be multiple paths
between the same two intersections.

H. Hoo’s Afraid of the Big Bad Wolf? UVa HSPC 2012 13 of 18

Output

For each case output “Case x:” where x is the case number, on a single line, followed by the chance that
Little Red Riding Hood makes it to Grandmother’s house if she takes the safest path.

Sample Input

2

3

1 3

3

1 2 0.950

1 3 0.700

2 3 0.900

5

1 5

6

1 2 0.850

2 3 0.550

1 3 0.500

1 5 0.200

3 5 0.500

2 3 0.700

Sample Output

Case 1: 0.855

Case 2: 0.2975

H. Hoo’s Afraid of the Big Bad Wolf? UVa HSPC 2012 14 of 18

I. Canyon Crossing

Friendship One is a brand new rover commissioned by the Astronautical
Center for Machinery to explore Triton, a moon of Neptune. It is being
launched into space on March 18th, and the pressure is on to finish the
software in time. Your boss has given you a very important task crucial
to the completion of the mission.

In order to gather all of the necessary samples the rover must cross a
canyon. Friendship One is equipped to travel on all sorts of rocky terrain,
but this canyon is littered with circular craters. Your boss is concerned
that if Friendship One takes a path that travels through one of these
craters, Friendship One will fall over and the mission will end in failure.
Some of these craters overlap with each other, which could create large
impassable regions inside the canyon. It is up to you to program Friendship One to decide whether a
canyon is passable or not. Are you up to the task?

The diagram below indicates the first test case in the sample data. Note that Friendship One is small
enough compared to the size of the craters that it can be treated as a point; it has no area.

Input

The first line of input is the number of test cases that follow. Each test case starts with a line containing
three integers, H, W , and N . H and W (1 ≤ H,W ≤ 10000) indicate the height and width of the canyon,
respectively. N (0 ≤ N ≤ 1000) indicates the number of craters that follow. Each crater appears on
a line by itself and contains three floating point values, X, Y , and R separated by spaces. X and Y
(0 < X − R;X + R < W), (0 ≤ Y ≤ H) represent the center of the crater, while R is the radius of the
crater.

Friendship One always starts at X = 0, with the destination being at X = W . Note that no point on
the crater will overlap with X = 0 or X = W , so Friendship One can move vertically at these positions
without difficulty.

I. Canyon Crossing UVa HSPC 2012 15 of 18

Output

For each case output “Case x:” where x is the case number, on a single line, followed by the string “Clear
To Go” if the canyon is passable and “Find Another Path” of the craters block the path.

Sample Input

2

100 200 3

50.000 90.000 20.000

70.000 60.000 20.000

100.000 20.000 25.000

10 20 2

3.000 2.000 7.000

4.000 5.000 6.500

Sample Output

Case 1: Clear To Go

Case 2: Find Another Path

I. Canyon Crossing UVa HSPC 2012 16 of 18

J. Yahtzee

As a child, Colleen loved the game “Yahtzee”. In Yahtzee, a player rolls
13 sets of five dice and assigns each set to various categories, which give
points towards a cumulative total. This is a one-to-one matching, meaning
that each set can only count for a single category and each category can
only contribute points from a single set. This means that each category
will be used exactly once, and each set of rolls will be used exactly once.

Now that Colleen has become an experienced programmer, she wants
to determine the maximum possible score that she could achieve from a
given set of dice rolls. Often times in Yahtzee, a player is allowed to select dice to re-roll; Colleen chose to
ignore this rule to make things easier for herself.

The categories to assign dice roll sets in standard Yahtzee are as follows.

• Ones: Multiply the number of ones on the dice by 1. Example: (1 2 3 4 5 = 1 point)

• Twos: Multiply the number of twos on the dice by 2. Example: (3 1 1 5 6 = 0 points)

• Threes: Multiply the number of threes on the dice by 3. Example: (4 1 3 3 3 = 9 points)

• Fours: Multiply the number of fours on the dice by 4. Example: (4 1 1 6 5 = 4 points)

• Fives: Multiply the number of fives on the dice by 5. Example: (2 1 6 5 5 = 10 points)

• Sixes: Multiply the number of sixes on the dice by 6. Example: (6 2 1 6 3 = 12 points)

If the sum of the above six categories is at least 63, an additional 35-point bonus is added to the total.

• Chance: Sum up all of the dice. Example: (1 2 3 4 5 = 15 points)

• Three of a Kind: If there are at least three of a single dice roll, sum up all of the dice. Example:
(1 1 1 5 6 = 14 points, 1 2 3 4 5 = 0 points)

• Four of a Kind: If there are at least four of a single dice roll, sum up all of the dice. Example: (1
1 1 1 6 = 10 points, 1 2 3 4 5 = 0 points)

• Short Straight: 25 points if at least four of the dice form a sequence. Example: (1 2 3 4 1 = 25
points, 1 2 3 1 2 = 0 points)

• Long Straight: 35 points if all five of the dice form a sequence. Example: (1 2 3 4 5 = 35 points,
1 2 3 4 1 = 0 points)

• Full House: 40 points if three of the dice are equal and the other two dice are also equal. Example:
(5 2 5 5 2 = 40 points, 5 2 5 5 1 = 0 points)

• Yahtzee: 50 points if all of the dice are equal. Example: (1 1 1 1 1 = 50 points, 1 1 1 1 2 = 0 points)

J. Yahtzee UVa HSPC 2012 17 of 18

Input

The first line of input is the number of test cases that follow. Each test case contains 13 lines of 5 integers
each, where each line represents the five dice rolled in a single set. Each dice roll is between 1 and 6,
indicating the value that appeared on that die.

Output

For each case output “Case x:” where x is the case number, on a single line, followed by a space, followed
by the maximum Yahtzee score possible with these dice roll sets.

Sample Input

2

5 4 2 6 1

1 4 5 2 6

5 3 2 5 1

3 5 3 6 2

1 3 6 4 6

6 4 2 3 4

3 3 4 5 6

1 2 3 3 3

6 6 6 3 2

1 4 5 3 2

5 3 2 3 3

1 1 1 1 2

2 4 2 5 2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Sample Output

Case 1: 154

Case 2: 110

J. Yahtzee UVa HSPC 2012 18 of 18

