
acm High School
Programming Contest @

2017 University of Virginia High School Programming Contest

Welcome to the 2017 University of Virginia High School Programming Contest. Before you start the
contest, please be aware of the following notes:

Rules

1. There one (1) problem in this packet, using letter A. Balloons are not used for the practice contest.

Problem Problem Name Balloon Color

A Practice (none)

2. Solutions for problems submitted for judging are called runs. Each run will be judged.

The judges will respond to your submission with one of the following responses. In the event that
more than one response is applicable, the judges may respond with any of the applicable responses.

Response Explanation

Yes Your submission has been judged correct.
No - Wrong Answer Your submission generated output that is not correct or is

incomplete.
No - Output Format Error Your submission’s output is not in the correct format or is

misspelled.
No - Excessive Output Your submission generated output in addition to or instead

of what is required.
No - Compilation Error Your submission failed to compile.
No - Run-Time Error Your submission experienced a run-time error.

No - Time Limit Exceeded Your submission did not terminate within one minute.

3. A team’s score is based on the number of problems they solve and penalty minutes, which reflect the
amount of time and number of incorrect submissions made before the problem is solved. For each
problem solved correctly, penalty minutes are issued equal to the time at which the problem was
solved plus 20 minutes for each incorrect submission. No penalty minutes are added for problems
that are never solved. Teams are ranked first by the number of problems solved and then by the
fewest penalty minutes.

4. This problem set contains sample input and output for each problem. However, the judges will test
your submission against several other more complex datasets, which will not be revealed until after
the contest. One challenge is designing other input sets for yourself so that you may fully test your
program before submitting your run. Should you receive a “wrong answer” judgment, you should
consider what other datasets you could design to further evaluate your program.

5. In the event that you think a problem statement is ambiguous or incorrect, you may request a
clarification. Read the problem carefully before requesting a clarification. If the judges believe that
the problem statement is sufficiently clear, you will receive the response, “The problem statement
is sufficient; no clarification is necessary.” If you receive this response, you should read the problem
description more carefully. If you still think there is an ambiguity, you will have to be more specific

The Contest UVa HSPC 2017 1 of 5



acm High School
Programming Contest @

or descriptive of the ambiguity you have found. If the problem statement is ambiguous in specifying
the correct output for a particular input, please include that input data in the clarification request.

You may not submit clarification requests asking for the correct output for inputs that you provide.
Sample inputs may be useful in explaining the nature of a perceived ambiguity, e.g., “There is no
statement about the desired order of outputs. Given the input: . . . , would not both this: . . . and
this: . . . be valid outputs?”.

If a clarification that is issued during the contest applies to all the teams, it will be broadcast to
everybody.

6. Runs for each particular problem will be judged in the order they are received. However, it is possible
that runs for different problems may be judged out of order. For example, you may submit a run for
B followed by a run for C, but receive the response for C first.

Do not request clarifications on when a response will be returned. If you have not received a response
for a run within 30 minutes of submitting it, you may have a runner ask the site judge to
determine the cause of the delay. Under no circumstances should you ever submit a
clarification request about a submission for which you have not received a judgment.

If, due to unforeseen circumstances, judging for one or more problems begins to lag more than 30 min-
utes behind submissions, a clarification announcement will be issued to all teams. This announcement
will include a change to the 30 minute time period that teams are expected to wait before consulting
the site judge.

7. The submission of abusive programs or clarification requests to the judges will be considered grounds
for immediate disqualification. This includes submitting dozens of runs within a short time period
(say, within a minute or two).

Your Programs

8. All solutions must read from standard input and write to standard output. In C this is scanf() /
printf(), in C++ this is cin / cout, and in Java this is System.in / System.out. The judges will
ignore all output sent to standard error (cerr in C++ or System.err in Java). You may wish to use
standard error to output debugging information. From your workstation you may test your program
with an input file by redirecting input from a file:

program < file.in

9. All lines of program input and output should end with a newline character (\n, endl, or println()).

10. All input sets used by the judges will follow the input format specification found in the problem
description. You do not need to test for input that violates the input format specified in the problem.

11. Unless otherwise specified, all lines of program output should be left justified, with no leading blank
spaces prior to the first non-blank character on that line.

12. Unless otherwise specified, all numbers in your output should begin with a ’-’ if negative, followed
immediately by 1 or more decimal digits. If it is a real number, then the decimal point should be
followed by as many decimal digits as can be printed. This means that for floating point values, use

The Contest UVa HSPC 2017 2 of 5



acm High School
Programming Contest @

standard printing techniques (cout and System.out.println). Unless otherwise noted, the judging will
check your programs with 10−3 accuracy, so only consider the sample output up until that point.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you should
ensure you do not round or use a set precision unless otherwise specified in the problem statement.

13. If a problem specifies that an input is a floating point number, the input will be presented according
to the rules stipulated above for output of real numbers, except that decimal points and the following
digits may be omitted for numbers with no fractional component. Scientific notation will not be used
in input sets unless a problem statement explicitly specifies it.

Good luck, and HAVE FUN!!!

. UVa HSPC 2017 3 of 5



acm High School
Programming Contest @

. UVa HSPC 2017 4 of 5



acm High School
Programming Contest @

A. Practice

You are teaching your younger sibling how to multiply! Given a list of numbers, print out those numbers
multiplied by themselves (i.e., their square).

Input Format

The first line of input, a positive integer, will be the number of test cases. This number will not exceed
1,000.

Each additional line will consist of a single positive integer. Each number will not exceed 10,000.

Output Format

For each test case, print out the square of the input number, each on it’s own line.

Sample Input

5

1

2

3

4

5

Sample Output

1

4

9

16

25

A. Practice UVa HSPC 2017 5 of 5


