
acm High School
Programming Contest @

2019 University of Virginia High School Programming Contest

Welcome to the 2019 University of Virginia High School Programming Contest. Before you start the
contest, please be aware of the following notes:

Rules

1. There are twelve (12) problems in this packet, using letters A-L. These problems are loosely sorted
by difficulty. As a team’s solution is judged correct, the team will be awarded a balloon. The balloon
colors are as follows:

Problem Problem Name Balloon Color

A Legion Roster red

B Ceasar Cipher light purple

C Target Practice yellow

D Gods Abound light blue

E Fortune Teller or Fraud? pink

F Circus Sorting light green

G Pesky Publicans orange

H Et tu brute? gold

I Marching Legion dark blue

J Convivium Combat white

K Casino Romale dark purple

L Aqueduct Rider dark green

2. Solutions for problems submitted for judging are called runs. Each run will be judged.

The judges will respond to your submission with one of the following responses. In the event that
more than one response is applicable, the judges may respond with any of the applicable responses.

Response Explanation

Yes Your submission has been judged correct.
No - Wrong Answer Your submission generated output that is not correct or is

incomplete.
No - Output Format Error Your submission’s output is not in the correct format or is

misspelled.
No - Excessive Output Your submission generated output in addition to or instead

of what is required.
No - Compilation Error Your submission failed to compile.
No - Run-Time Error Your submission experienced a run-time error.

No - Time Limit Exceeded Your submission did not terminate within one minute.

3. A team’s score is based on the number of problems they solve and penalty minutes, which reflect the
amount of time and number of incorrect submissions made before the problem is solved. For each
problem solved correctly, penalty minutes are issued equal to the time at which the problem was
solved plus 20 minutes for each incorrect submission. No penalty minutes are added for problems

The Contest UVa HSPC 2019 1 of 28



acm High School
Programming Contest @

that are never solved. Teams are ranked first by the number of problems solved and then by the
fewest penalty minutes.

4. This problem set contains sample input and output for each problem. However, the judges will test
your submission against several other more complex datasets, which will not be revealed until after
the contest. One challenge is designing other input sets for yourself so that you may fully test your
program before submitting your run. Should you receive a “wrong answer” judgment, you should
consider what other datasets you could design to further evaluate your program.

5. In the event that you think a problem statement is ambiguous or incorrect, you may request a
clarification. Read the problem carefully before requesting a clarification. If the judges believe that
the problem statement is sufficiently clear, you will receive the response, “The problem statement
is sufficient; no clarification is necessary.” If you receive this response, you should read the problem
description more carefully. If you still think there is an ambiguity, you will have to be more specific
or descriptive of the ambiguity you have found. If the problem statement is ambiguous in specifying
the correct output for a particular input, please include that input data in the clarification request.

You may not submit clarification requests asking for the correct output for inputs that you provide.
Sample inputs may be useful in explaining the nature of a perceived ambiguity, e.g., “There is no
statement about the desired order of outputs. Given the input: . . . , would not both this: . . . and
this: . . . be valid outputs?”.

If a clarification that is issued during the contest applies to all the teams, it will be broadcast to
everybody.

6. Runs for each particular problem will be judged in the order they are received. However, it is possible
that runs for different problems may be judged out of order. For example, you may submit a run for
B followed by a run for C, but receive the response for C first.

Do not request clarifications on when a response will be returned. If you have not received a response
for a run within 30 minutes of submitting it, you may have a runner ask the site judge to
determine the cause of the delay. Under no circumstances should you ever submit a
clarification request about a submission for which you have not received a judgment.

If, due to unforeseen circumstances, judging for one or more problems begins to lag more than 30 min-
utes behind submissions, a clarification announcement will be issued to all teams. This announcement
will include a change to the 30 minute time period that teams are expected to wait before consulting
the site judge.

7. The submission of abusive programs or clarification requests to the judges will be considered grounds
for immediate disqualification. This includes submitting dozens of runs within a short time period
(say, within a minute or two).

Your Programs

8. All solutions must read from standard input and write to standard output. In C this is scanf() /
printf(), in C++ this is cin / cout, in Java this is System.in / System.out, and in Python this
is print() and input(). The judges will ignore all output sent to standard error (cerr in C++,
System.err in Java). You may wish to use standard error to output debugging information. From
your workstation you may test your program with an input file by redirecting input from a file:

The Contest UVa HSPC 2019 2 of 28



acm High School
Programming Contest @

program < file.in

9. All lines of program input and output should end with a newline character (\n, endl, or println()).

10. All input sets used by the judges will follow the input format specification found in the problem
description. You do not need to test for input that violates the input format specified in the problem.

11. Unless otherwise specified, all lines of program output should be left justified, with no leading blank
spaces prior to the first non-blank character on that line.

12. Unless otherwise specified, all numbers in your output should begin with a ’-’ if negative, followed
immediately by 1 or more decimal digits. If it is a real number, then the decimal point should be
followed by as many decimal digits as can be printed. This means that for floating point values, use
standard printing techniques (cout and System.out.println). Unless otherwise noted, the judging will
check your programs with 10−3 accuracy, so only consider the sample output up until that point.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you should
ensure you do not round or use a set precision unless otherwise specified in the problem statement.

13. If a problem specifies that an input is a floating point number, the input will be presented according
to the rules stipulated above for output of real numbers, except that decimal points and the following
digits may be omitted for numbers with no fractional component. Scientific notation will not be used
in input sets unless a problem statement explicitly specifies it.

Good luck, and HAVE FUN!!!

. UVa HSPC 2019 3 of 28



acm High School
Programming Contest @

. UVa HSPC 2019 4 of 28



acm High School
Programming Contest @

A. Legion Roster

Emperor Aurelian has returned from yet another victory against the
northern barbarians and wants to have a triumph, or victory parade,
through the city. There are legions of soldiers coming from every
province in the Empire to celebrate the victory. You are tasked with
cooking for the entire army and therefore need to figure out how many
soldiers there will be.

Given the number of legions taking part in the parade, how many
soldiers will there be?

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There
will be n test cases that follow.

Each test case starts with a single integer, 0 < x ≤ 200, the num-
ber of legions in the parade. Each legion consists of 1,500 soldiers.

Output Format

Print out the number of soldiers in the parade for each test case.

Sample Input

5

43

10

200

62

33

Sample Output

64500

15000

300000

93000

49500

A. Legion Roster UVa HSPC 2019 5 of 28



acm High School
Programming Contest @

A. Legion Roster UVa HSPC 2019 6 of 28



acm High School
Programming Contest @

B. Caesar’s Cipher

Caesar has discovered an ingenious way to encode his messages. By
shifting the value of each letter in his messages, he can make sure that
Brutus will never discover his plans! Your job as Caesar’s scriba is
to encode Caesar’s messages.

To encode a message, each lowercase character c is shifted by v,
the shifting value, positions in the alphabet to produce the character
s. For example, if c = 'r' and v = 4, the shifted value will be s = 't'.
All letters in the messages will be lowercase, and overflow past the
last letter of the alphabet 'z' cycles through the start of the alphabet.
Thus, if c = 'u' and v = 8, s = 'c'.

Given a message and a shifting value, v, what will the encoded
message be?

Input Format

The first line of the input will be a single integer n ≤ 10, 000. There will be n test cases that follow.

Each test case consists of two lines. On the first line will be the shifting value 0 ≤ v ≤ 128, and on the
second will be the plain message from Caesar. Each message will consist of only lowercase characters (a-z)
and spaces.

Output Format

For each message, encode it using the provided shifting value and print it out on its own line.

Sample Input

4

2

et tu brute

5

carpe diem

18

ex nihilo nihil fit

100

audere est facere

Sample Output

gv vw dtwvg

hfwuj injr

wp fazadg fazad xal

wqzana aop bwyana

B. Caesar’s Cipher UVa HSPC 2019 7 of 28



acm High School
Programming Contest @

B. Caesar’s Cipher UVa HSPC 2019 8 of 28



acm High School
Programming Contest @

C. Target Practice

Everyone knows that the best archer of Mount Olympus is Diana, the
Goddess of the Hunt. However, her twin brother Apollo disagrees, so
he challenges her to an archery contest. Little does he know that the
reason for Diana’s skill is her understanding of physics that allows her
to never miss.

Every shot in this competition is taken from the origin of a Carte-
sian plane towards a target at some position (x, y). The arrow is fired
with velocity vi m/s at an angle of θ radians above the +x axis.

The equations governing the flight of an arrow are:

vy = vi ∗ sin(θ)

vx = vi ∗ cos(θ)

x = vx ∗ t

y = vy ∗ t− 1
2 ∗ 9.8 ∗ t2

Diana will always hit the target exactly. Given the x-position of
the target (in m) find the height, or y-position, of her target.

Input Format

The input for this problem will begin with a single integer n ≤ 1, 000.
There will be n test cases that follow.

Each test case will be on a single line consisting of three floating-point numbers. The first number is
the initial velocity of the arrow 0 < vi ≤ 1, 000, in m/s. The second number is the angle at which Diana
fires −π

2 < θ < π
2 , in radians. The final number is the x-position of the target 0 < x ≤ 10, 000 given in

meters.

Output Format

For each test case output a single floating point number denoting the y-position of the target in meters.
Your ouput value should be truncated to the third decimal place, and must be accurate to the thousandth
place.

Sample Input

2

1 0 1

10 0.78539816339 2

Sample Output

-4.9

1.607

C. Target Practice UVa HSPC 2019 9 of 28



acm High School
Programming Contest @

C. Target Practice UVa HSPC 2019 10 of 28



acm High School
Programming Contest @

D. Gods Abound

Jupiter, Janus, and Juno; Mars, Mercury, and Minerva; Vulcan,
Venus, and Vesta. The Romans had many, many gods. And while
they’re capable enough to remember the names, they need a bit of
help remembering that Mercury was the god of blacksmithing, or was
it Vulcan? Either way, your task is to write a program to help keep
track of which god does what.

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There
will be n test cases that follow.

The first line of each test case will contain two integers, the number
of gods 0 < g ≤ 1, 000 and the number of queries q < 1, 000. g lines
will then follow, each with the name of a god and the role of that god,
for example, “Vulcan Blacksmithing”. Each godly name and role will
consist only of letters and no spaces, but the name and the role will
be separated by a space. No god will be listed twice. q queries will
follow, one on each line, with the name of a god, such as “Vulcan”.

Output Format

Output the corresponding role of the god in each query on its own line.

Sample Input

1

4 3

Saturn Sky

Vulcan Blacksmithing

Mercury Speed

Janus Choices

Mercury

Vulcan

Janus

Sample Output

Speed

Blacksmithing

Choices

D. Gods Abound UVa HSPC 2019 11 of 28



acm High School
Programming Contest @

D. Gods Abound UVa HSPC 2019 12 of 28



acm High School
Programming Contest @

E. Fortune Teller of Fraud?

The oracle Pythia claims she can predict the future. A skeptic wants
to prove she is a fraud, so they agree to a challenge. Pythia will
predict the temperature of the next 10 days. 10 days later, the skeptic
will return with the actual daily temperatures. If she gets at least 8
correct, the skeptic will accept her as the Oracle. If she gets fewer
than 5 correct, the skeptic will declare her a fraud. If she gets 5,6,
or 7 correct it is a draw. Given Pythia’s predictions and the actual
temperatures, determine the belief of the skeptic.

Input Format

Input will begin with a single integer, n ≤ 1, 000. There will be n test
cases that follow. Each test case will consist of two lines. The first
line will consist of Pythia’s prediction as 10 space-separated integers
0 ≤ xi ≤ 50. The second line will be the actual temperatures, also as
10 space-separated integers 0 ≤ yi ≤ 50.

Output Format

For each case, print “Oracle” if the skeptic believes Pythia, “Fraud”
if the skeptic declares Pythia so, or “Draw” if the results are incon-
clusive. Each output should be separated by line.

Sample Input

3

49 7 10 3 39 41 9 27 9 48

49 7 9 3 39 41 9 27 9 48

32 33 31 22 18 28 37 38 3 14

18 33 31 22 20 28 37 40 3 10

7 4 25 38 5 16 4 22 37 38

4 2 25 35 3 19 5 22 37 38

Sample Output

Oracle

Draw

Fraud

E. Fortune Teller of Fraud? UVa HSPC 2019 13 of 28



acm High School
Programming Contest @

E. Fortune Teller of Fraud? UVa HSPC 2019 14 of 28



acm High School
Programming Contest @

F. Circus Sorting

All hail the greatest sport ever to exist: Roman chariot racing! Last
week, the biggest race of the year was run for the Roman Games at
the Circus Maximus. But somehow in all the commotion, the ranking
sheet was lost! The officials still have the list of each chariot’s time,
however. Can you give them back the list of the rankings?

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There
will be n test cases that follow.

The first line of each test case will consist of a single integer,
c < 10, 000, the number of competitors. c lines will follow, each with a string m, the alphanumeric name
of a competitor, and t < 10, 000, a floating-point time value of when the competitor finished. m and t are
separated by a single space character.

Output Format

Output the list of the competitors’ names, one per line, in the order of increasing corresponding time.

Sample Input

1

6

achilleus 47.5

cronus 34.67

cyrus 501.42

septimus 761.55

lucius 94.91

magnus 12.1

Sample Output

magnus

cronus

achilleus

lucius

cyrus

septimus

F. Circus Sorting UVa HSPC 2019 15 of 28



acm High School
Programming Contest @

F. Circus Sorting UVa HSPC 2019 16 of 28



acm High School
Programming Contest @

G. Pesky Publicans

Tax collectors in the Roman empire, called publicans, are not well
perceived, and for good reason. However, they are necessary for the
running of the empire. Your job is to estimate how much money Rome
will receive in taxes. Not everyone pays, but at least one person is
guaranteed to pay. The trouble is you can never really know who will
and won’t pay.

Given a list of what citizens would pay if they did pay taxes,
output the average of all possible sums of taxes received.

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There
will be n test cases that follow.

Each test case begins with a single integer p denoting the number
of people in Rome, 1 ≤ p ≤ 10, 000. The next line will contain p space separated integers, 0 < vi < 10, 000,
denoting the amount of taxes that each citizen would pay if they decided to pay.

Output Format

Each test case should contain a single floating point number denoting the average taxes paid, accurate and
truncated to three decimal places.

Sample Input

2

5

1 2 3 4 5

5

10 11 12 13 14

Sample Output

7.742

30.967

G. Pesky Publicans UVa HSPC 2019 17 of 28



acm High School
Programming Contest @

G. Pesky Publicans UVa HSPC 2019 18 of 28



acm High School
Programming Contest @

H. Et Tu Brute?

Caesar has been betrayed! He always thought his best friends were the
senators of Rome, but it turns out they are trying to kill him. Even
his best friend, Marcus Junius Brutus, is in on the plot. Luckily, he’s
managed to get away, for now. If he can make it out of the senate
he’ll be okay, and he can overthrow the senate and take over Rome.

Unfortunately, he’s a little rattled, and is not making smart deci-
sions. Every minute, he is randomly choosing which room he enters
and hides in for the next minute. In each room there is a p% chance
that he will be captured. Aftermminutes the senators will give up the
search and go back to their homes, allowing him to escape. Calculate
the chance that he will escape if he chooses rooms at random.

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There
will be n test cases that follow.

Each test case will start with a line of 2 integers: the number of
rooms 5 ≤ r ≤ 50 and the number of minutes Caesar must survive, m ≤ 10. The next r lines will consist
of a floating point number p < 1 denoting the probability that Caesar survives for the next minute in this
room and 4 integers between 1 and r (inclusive on both ends) denoting which rooms the current room is
connected to. Caesar always spends the first minute in room 1.

Note: The senate is weird, just because room a leads to room b does not mean Caesar can get back
into room a from room b.

Output Format

Output a single floating point number denoting the probability that Caesar survives. The output should
be accurate and truncate to three decimal places.

Sample Input

1

5 3

0.50 2 3 4 5

0.25 1 3 4 5

0.30 1 2 4 5

0.80 1 2 3 5

0.60 1 2 3 4

Sample Output

0.113

H. Et Tu Brute? UVa HSPC 2019 19 of 28



acm High School
Programming Contest @

H. Et Tu Brute? UVa HSPC 2019 20 of 28



acm High School
Programming Contest @

I. Marching Legion

There’s a rebellion in Antioch! Caesar is preparing to dispatch an
entire legion of his best troops to quell the rebellion, but before he
does, he wants to make certain the legion will make it to Antioch.
Along the way, there are mountains, rivers, seas, and mythical mon-
sters, each of which the legion cannot pass through. Given a map a
legion must travel through, find out if the legion can reach Antioch
from Rome.

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There
will be n test cases that follow.

Input will begin with two integers, 0 < h,w < 100, indicating the
height and width of the map, respectively. h lines with w characters
each will follow. An “X” on the map represents an impassable obstacle
while an “O” represents traversable terrain. Note that legions, moving
in square formations, can only move up, down, left, and right; legions can never travel diagonally. “R”
represents Rome, the starting point of the legion, and “A” represents Antioch, the destination point for
the legion.

Output Format

Output “March onward!” if the legion can reach Antioch from Rome, “Stay home!” otherwise. Each
output should be line separated.

Sample Input

3

6 6

XXXXOA

XOXXOX

XOXXOX

XOOOOX

XOXXXX

XROOOX

4 4

XXOA

XOOX

XOXX

XRXO

2 2

XA

RX

I. Marching Legion UVa HSPC 2019 21 of 28



acm High School
Programming Contest @

Sample Output

March onward!

March onward!

Stay home!

I. Marching Legion UVa HSPC 2019 22 of 28



acm High School
Programming Contest @

J. Convivium Combat

Caesar has just returned victorious from conquering a far-off land, and
it’s celebration time. The senate has thrown a great feast in Caesar’s
honor, and no Roman convivium is complete without a food fight.
The Romans were nothing if not orderly in their fighting, and the
same held for their food fights. At the start of the food fight, the
cuisine combatants would divide in to two even groups. Then, each
member of each group would pick a target in the other group who
they will barrage with their meal. Caesar wants to win this food
fight, and he knows that the initial barrage matters the most. If each
of his food fighters can pick exactly one target, how many members
of the other team can be hit in the initial barrage?

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There
will be n test cases that follow.

The first line of each test case will consist of a single integer 0 <
c ≤ 5, 000, indicating the number of cuisine combatants on Caesar’s
team. c lines will follow. Each line will have the food fighter’s name, the number of targets they can hit,
0 ≤ t ≤ n, and the names of their t targets, each separated by a space. Members of Caesar’s team may
share names with members of the opposing team, but no two members of the same team will share a name.
All names will be alphanumeric and not have spaces.

Output Format

Output the maximum number of distinct targets Caesar’s team can hit with their initial food barrage.

Sample Input

1

10

Saltius 3 Aufeius Ulpius Fulginas

Ragonius 3 Maenius Sidonius Julius

Vicirius 3 Pinarius Maenius Ulpius

Septimius 1 Pinarius

Cocceius 1 Sidonius

Trebius 4 Julius Dellius Sabucius Pinarius

Cossinius 0

Aelius 4 Maenius Sabucius Ulpius Aufeius

Catius 3 Julius Fulginas Dellius

Vitellius 2 Julius Sabucius

Sample Output

9

J. Convivium Combat UVa HSPC 2019 23 of 28



acm High School
Programming Contest @

J. Convivium Combat UVa HSPC 2019 24 of 28



acm High School
Programming Contest @

K. Casino Romale

It’s a showdown in the Coliseum! The Roman Empire’s finest warriors
have flocked to the city of Rome for the world’s first official rock,
paper, scissors tournament. The excitement is palpable; even the
townsfolk and farmers are getting into it! The emperor himself has
said that he will play against the winner of the tournament, and if
the emperor loses, he will pay the winner 1 million silver denarius.

While this is great fun for nearly everyone involved, the treasurer
isn’t so happy about it. Not only is it a needless expense, it’s also
uncertain. To make his life a bit easier, why don’t you find the ex-
pected value of the pay out, rounded to the nearest silver denarius?
For example, if the winner of the tournament would beat the emperor 9 times out of 10, then the expected
pay out is 900,000 silver denarii.

To make your job easier, scouters have determined the probability that each contestant will play rock,
paper, or scissors. For example, if a given contestant’s chances are 0.25, 0.5, and 0.25 respectively, then
each round, they may choose either rock, paper, or scissors, but they are twice as likely to pick rock as
paper or scissors.

The tournament works as follows. Contestant 1 first goes against Contestant 2, Contestant 3 goes
against Contestant 4, and so on. Then the winner of 1 vs 2 moves on to go against the winner of 3 vs 4,
winner of 5 vs 6 moves on to go against the winner of 7 vs 8, and so on. Then the winner of 1, 2, 3, and 4
goes against the winner of 5, 6, 7, and 8. It continues like this until there is only one contestant remaining,
who then goes against Caesar.

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There will be n test cases that follow.

The first line of each test case will be the number of contestants, c = 2m, where m ≤ 16. c lines will
follow, each with three floating-point values, 0 < ri, pi, si ≤ 1, ri + pi + si = 1 indicating the probabilities
that contestant i will pick rock, paper, or scissors in each match respectively. One more line will follow
consisting of three floating-point values 0 ≤ rc, pc, sc ≤ 1, rc+pc+sc = 1, indicating the probability Caesar
will pick rock, paper, or scissors.

Output Format

Output the number of silver denarius Caesar can expect to pay the winner of the tournament. For example,
if Caesar has a 50% chance of losing, output would be “500000”.

Sample Input

1

4

0.4 0.3 0.3

0.2 0.1 0.7

0.1 0.4 0.5

K. Casino Romale UVa HSPC 2019 25 of 28



acm High School
Programming Contest @

0.4 0.4 0.2

0.2 0.6 0.2

Sample Output

544399

K. Casino Romale UVa HSPC 2019 26 of 28



acm High School
Programming Contest @

L. Aqueduct Rider

Water parks can be a lot of fun, right? The Roman children sure
would have thought so! Unfortunately, they didn’t have any proper
water parks, so instead they used aqueducts.

Aqueducts make long, interweaving paths all throughout Rome.
Since aqueducts are constantly splitting and combining, there are mil-
lions of possible ways to get to the bottom of an aqueduct. The path
they take can be drastically different depending on which branches
they slide down. While the number of paths down is numerous, it is
not infinite; once you go down a portion of the aqueduct, you can never go back up and there is no path
to get to the start of that segment.

Your task is to help the Roman hero Hercules in finding the longest path down an aqueduct network
so he can tell the children of Rome.

Input Format

The first line of the input will be a single integer, n ≤ 1, 000. There will be n test cases that follow.

The first line of each test case consists of two integers 0 < x, y ≤ 100, 000, the number of sections in
the aqueduct network. x lines will follow, each with four integers i, u, v, and l such that 0 ≤ i, u, v ≤
100, 000, v−u ≤ l ≤ 100, 000, indicating the ID, starting height, ending height, and length of each aqueduct
section, respectively. y more lines will follow, each with two integers 0 ≤ h, k ≤ 100, 000, indicating that
the aqueduct sections with IDs h and k are connected.

Output Format

For each test case, output the length of the longest path down the aqueduct network as a single integer.
Each output should be separated by line.

Sample Input

1

9 13

0 8 4 6

5 15 8 11

4 15 8 8

2 8 0 14

7 15 4 14

3 15 8 12

1 8 4 4

6 15 4 11

8 4 0 7

5 2

4 1

3 1

0 8

4 0

L. Aqueduct Rider UVa HSPC 2019 27 of 28



acm High School
Programming Contest @

5 0

6 8

1 8

3 2

4 2

5 1

3 0

7 8

Sample Output

26

L. Aqueduct Rider UVa HSPC 2019 28 of 28


